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Diffractive-optical processing of temporal signals,
part I: basic principles
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The topic of this paper is the utilization of time for optical information processing. As clock rates in
computing and communication systems increase and reach the THz border, optical techniques for signal
filtering, shaping and clock distribution become attractive. We discuss the use of optics in temporal
processing and consider in particular diffractive solutions. In part one of this paper, we discuss the basic
concepts of temporal optics.
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Most optical and spectroscopic instruments are described
in terms of spatial coordinates only. The temporal as-
pects are often neglected. Those instruments are oper-
ating in a time-stationary fashion. Some exceptions do
exist but they are often considered not to be fundamen-
tal. However, that attitude has changed during recent
decades for two reasons: laser light, with its narrow
temporal frequency spectrum is available now. And the
optical communications technology requires and provides
high-speed optical devices and processors.

Time does play an important role in optics. A few
scientists paid attention to the temporal aspects of light
already long before it became a central issue around
1970 in the context of optical communications. In his
paper, “Die Freiheitsgrade von Strahlenbündeln” (The
degrees of freedom of bundles of light rays) published in
1914, Laue[1] introduced implicitly what would now be
called the “time-bandwidth product” of an optical signal.
Even earlier, Talbot described a diffraction experiment in
white light, and discovered the so-called “Talbot bands”
(not to be confused with Talbot’s self-imaging)[2]. This
experiment has been largely ignored by most text book
authors. It is worth reviewing, however, for historical
reasons and because it provides a simple example of the
role of the group velocity in interferometry[3,4].

In order to categorize the different aspects of “time in
optics”, we look at the scheme shown in Table 1 utiliz-
ing the analogy to spatial optics. From this matrix, we
can deduce four categories for the role of time in optics:
first, topics that can directly be described in the t-
domain, second, topics for which a frequency description
in νt is appropriate, third, the space-time isomorphism
with analogous phenomena in both domains, and fourth,

Table 1. Categorization of Spatial and Temporal
Optical Phenomena. The Mathematical

Description Can Be Done by Using the Spatial
and Temporal Coordinate, Respectively, or

by Going to the Fourier Domain

Time Space

Direct s(t) u(x)

Fourier-Inverse s̃(νt) ũ(νx)

the coupling of the spatial and temporal domain.
Before briefly discussing the four categories, we will

start by comparing light propagation in the spatial and
temporal dimension. Propagation in space is described
by Fresnel diffraction (Fig. 1). Diffraction represents
spatial dispersion and is described mathematically by a
quadratic phase term in the exponent of the diffraction
integral

u0(x, y) =
∫∫

ũ0(νx, νy) exp [2πi (νxx + νyy)] dνxdνy,(1)

u(x, y, z) =
∫∫

ũ0(νx, νy)

× exp
{

2πi

[
νxx + νyy −

(
λz

2

) (
ν2

x + ν2
y

)]}
dνxdνy, (2)

here, the term including ν2
x + ν2

y describes diffraction or,
as we might say, “spatial dispersion”. Propagation in
the temporal domain (for example, of a light wave in an
optical fiber, see Fig. 2) is described by

s0(t) =
∫∫

s̃0(νt) exp (−2πiνtt) dνt, (3)

s(t, L) =
∫∫

s̃0(νt) exp
{−2πi

[
νt (t + L/c)−Dν2

t

]}
dνt.

(4)

Fig. 1. Fresnel propagation of an optical wavefield from plane
z = 0 to z > 0. The complex amplitude at z = 0 is u0(x, y),
at z > 0 it is denoted by u(x, y, z).
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Fig. 2. Propagation of an optical wave over a distance L (for
example, in an optical fiber) results in a corresponding time
delay. In addition, one observes dispersion.

The expression L/c is just a delay, the second term in
the exponent, Dν2

t , is the temporal dispersion. It is the
analog to the quadratic expression of Eq. (2). Note: we
consider only quadratic and no higher phase terms for
the sake of simplicity.

The first category relates to the fundamental properties
of light. An optical wave is a function of three spatial and
the temporal coordinates and here we explicitly consider
its properties with respect to t. One may consider one
of the fundamental theorems of optics, Fermat’s princi-
ple, as an example of the temporal properties of light: it
states that the optical path of a light ray is a minimum[5]

1
c

P2∫

P1

nds =

t(P2)∫

t(P1)

dt = ∆t, (5)

here, the integral on the left side represents the optical
path, the integral on the right side the duration for the
light propagation. The time coordinate may come into
play in an implicit manner (as in the case of Fermat)
by the propagation delay of a light signal. Or it may
play an explicit role as in the case of a modulated light
signal. Von Laue, already mentioned above, went on
to discuss the temporal modulation of light. He dis-
tinguished between “true” and “pseudo”-modulation of
light depending on the ratio of the modulation frequency
and the optical (carrier) frequency of the light signal[6].
The first “true” modulation of light was achieved by
Connes et al. in 1962[7].

Connes’ work may also be viewed as belonging to the
second category about the spectral aspects of light sig-
nals. The whole complex of optical spectroscopy belongs
here with its many different aspects and long history.
Spectroscopic techniques have been developed for cen-
turies because the power spectrum |ũ(νt)|2 of a signal u(t)
is much easier to observe than the signal itself. However,
as we will discuss later, many interferometric devices
known from spectroscopy can be useful also for direct
processing of optical signals in the time domain. The
most widely known spectrometer is probably the grating
diffraction interferometer. It is also considered in the
experiment about the aforementioned “Talbot bands”.
Talbot noticed that one of the two first diffraction orders
is modulated by a fringe pattern if a glass plate is put
halfway into the illuminating beam before the grating
(Fig. 3). The other first order band remains unchanged.
An explanation describing the experiment as a “curious
dispersion” effect is found in Ref. [3]. Of course, we
should mention the most prominent and timely case of
time optics experiment, the “frequency comb”, which has

Fig. 3. Experimental setup for observing Talbot bands: a
plane wave illuminated a grating spectrometer. By inserting
a glass plate (GP) halfway into the aperture, the spectrum in
the +1st order is modulated by interference fringes while the
−1st order remains (visibly) unchanged.

recently been honored by the 2005 Nobel prize awarded
to Hänsch[8]. Frequency comb techniques will allow one,
for example, to control the amplitude of ultrafast laser
pulses.

A light-wave is a spatio-temporal phenomenon and
there exists an isomorphism between the spatial and the
temporal effects. The essence of this analogy[9] can be
stated as follows: the temporal frequency corresponds to
the spatial frequency in the lateral direction, the time
t corresponds to the z-coordinate indicating the opti-
cal axis of light propagation. The space-time duality
can be used, for example, to explain pulse compression
schemes[10−13], temporal imaging[14], and filtering[15].

The coupling of the temporal and spatial coordinates
occurs naturally due to the propagation delay. It has
been exploited in several ways. The first was probably
Denisyuk et al.[16] who started efforts on the record-
ing of the propagation of an optical wave as later made
popular by Abramson[17] and Bartelt et al.[18]. The
frequency resolved optical gating (FROG) method for
measuring ultrafast optical pulses is another example[19].
The space-time-coupling is also the reason for time limi-
tations in high-speed optical parallel processors[20,21]. As
the basis of their considerations in Ref. [21], Lohmann et
al. discussed imaging as a degeneracy of Fermat’s prin-
ciple. Degeneracy means, that by using a lens, not only
one ray but many rays travel from a particular object
point P1 to the image point P2 with identical delays.
This concept of “Fermat degeneracy” can be extended
further from single lens to telecentric imaging systems
to serve as a model for the analysis of temporal and
spatial optical systems. As we will discuss later in part
II, space-time-coupling can also be utilized in order to
implement temporal interconnection such as the perfect
shuffle[22,23] and filtering operations.

The handling of information has three aspects: trans-
mission, processing, and storage. (We omit the aspect
of display here.) The variables may be the spatial co-
ordinates or the time coordinate. Furthermore, the in-
formation can be represented in an analog (continuous
or discrete) or in a digital format. All these possibilities
open up a large combinatoric space. Much literature
about the various subjects can be found[24−26].

Here, we are concerned with the processing of temporal
optical signals. Our interest is to provide solutions for the
frequency range beyond the THz border where electronics
just runs out of bandwidth. The fastest electronic tran-
sistors can be operated at about 600 GHz. On the other
hand, optical communications systems based on fiber-
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optics can go much farther. So, in order to move beyond
the electronics-based regime of optical fiber communica-
tions, optical techniques for switching, processing, and
storage have to be extended to the THz domain[27,28].
The processing tasks may involve issues such as pulse
shaping, filtering, clocking, encryption, etc..

Short optical pulses with durations in the ps/fs regime
are used for many purposes in optical information tech-
nology. The temporal processing may serve different
purposes as mentioned above: pulse compression, pulse
shaping, filtering, ultra-precise time measuring by means
of the “frequency comb”, etc.. The processing of an op-
tical signal requires suitable devices. Their realization
depends on the pulse width. For fs-pulses optical in-
terferometers are used, some of them were already cited
above, like the Treacy interferometer. The Treacy in-
terferometer is an example of an double grating setup
used in configuration where the +1st order is combined
with the −1st order of the second grating. One can ob-
serve that quite often, optical filtering is achieved by
double grating devices. However, other possibilities ex-
ist as well: resonator-type interferometers like the Fabry-
Perot interferometer or integrated waveguide-optical ring
resonators[29,30].

The different filter devices can be categorized in terms
of linear systems theory: we can distinguish between
finite impulse response (FIR) and infinite impulse re-
sponse (IIR) filters. Fabry-Perot[7] and ring resonator
structures are of IIR-type, Mach-Zehnder and grating in-
terferometers are examples for FIR-filters. The structure
of a FIR-filter is shown in Fig. 4. The input signal, sin(t),
is split up into n branches. The nth branch is delayed
by nτ and weighted with a coefficient an. The output
signal sout(t) is hence given as the convolution (∗) of the
input with the temporal impulse response h(t)

sout(t) =
N∑

n=0

sin(t− nτ) = sin(t) ∗ h(t). (6)

Instead of using the temporal impulse response, a lin-
ear filter can also be equivalently described by its transfer
function

H̃(ν) =

+∞∫

−∞
h(t) exp(2πiνt)dt. (7)

A simple example for an optical FIR-filter is a
diffraction grating. In the direction of the 1st order,
for example, the time delay τ = λ/c.

Fig. 4. Schematic representation of a tapped-delay line (or
finite impulse response) filter. The incoming signal sin(t),
is divided into N branches, each branch gets delayed and
weighted differently. Finally all branches are recombined to
form the output signal, sout(t).

In the first part of this paper we have provided an
overview of the different aspects of time and space in
information optics. In particular, we have categorized
the field into four areas which explain in a systematic
way the variety of phenomena. The most prominent and
timely case of time optics experiment, the “frequency
comb”, has recently been honored by the 2005 Nobel
prize awarded to Th. Hänsch[8].

J. Jahns’s e-mail address is juergen.jahns@fernuni-
hagen.de.
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